Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 13: 883898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35662724

RESUMO

The herb-pair ginseng-Fuzi (the root of Aconitum carmichaelii) is the material basis of Shenfu prescriptions and is popular in traditional Chinese medicine for the treatment of heart failure, and even shock with severe-stage of COVID-19. A narrow therapeutic window of Fuzi may cause significant regional loss of property and life in clinics. Therefore, systemic elucidation of active components is crucial to improve the safety dose window of Shenfu oral prescriptions. A high performance liquid chromatography-mass spectrometry method was developed for quantification of 10 aconitines in SD rat plasma within 9 min. The limit of detection and the limit of quantification were below 0.032 ng/ml and 0.095 ng/ml, respectively. Furthermore, a systemic comparison with their pharmacokinetic characteristics after oral administration of a safe dosage of 2 g/kg of Fuzi and ginseng-Fuzi decoction for 24 h was conducted. Eight representative diester, monoester, and non-ester aconitines and two new active components (i.e., songorine and indaconitine) were all adopted to elucidating the differences of the pharmacokinetic parameters in vivo. The compatibility of Fuzi and ginseng could significantly increase the in vivo exposure of active components. The terminal elimination half-life and the area under the concentration-time curve of mesaconitine, benzoylaconitine, benzoylmesaconitine, benzoylhypaconitine, and songorine were all increased significantly. The hypaconitine, benzoylmesaconitine, and songorine were regarded as the main active components in vivo, which gave an effective clue for the development of new Shenfu oral prescriptions.

2.
Phytomedicine ; 100: 154059, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35338992

RESUMO

BACKGROUND: The synergic action of compound prescriptions is an important feature and core advantage of traditional medicine. Ginseng-Fuzi decoction is a classic compatible phytomedicine in China, of which Ginseng can effectively reduce the toxicity of Fuzi in clinical, but the detoxification chemical mechanism is still unclear. PURPOSE: Develop a novel method for real-time tracking and monitoring of complex substances in the decoction system of traditional Chinese medicine to uncover the detoxification effect Ginseng on Fuzi and explore the possible chemical reaction mechanism of Ginseng-Fuzi co-decoction. METHODS: A novel real-time monitoring system, online filtration electrospray ionization mass spectrometry, was developed for extremely complex substances analysis in the decoction of traditional medicine compounds to uncover the directionally detoxification effect and the mechanism of compatibility interaction. RESULTS: Nine key alkaloids and 7 ginsenosides in Ginseng-Fuzi decoction were simultaneously in-situ monitoring in positive ion mode or negative ion mode respectively. Both types of targeted analytes had satisfactory MS signal response for real-time qualitative and quantitative analysis with high precision (RSD < 14.04%) and low LLODs (0.002 ng/ml-10 ng/ml). Through long-term tracking analysis, the exact detoxification and synergistic effect of Ginseng-Fuzi decoction were confirmed as the concentration of main toxic alkaloids decreased (e.g. the content of mesaconitine has been reduced by about 38%) and the main active monoester alkaloids increased obviously. More importantly, the possible molecular mechanism of the detoxification effect of Ginseng compatibility was revealed for the first time, which was the nucleophilic substitution reaction of diester alkaloids catalyzed by fatty acids. CONCLUSION: This study revealed the exact effect of co-decoction of Ginseng and Fuzi at the molecular level and the chemical reaction mechanism of fatty acid-catalyzed degradation of toxic diester-type alkaloids. The comprehensive multi-component real-time monitoring strategy for complex traditional medicine compounds developed and implemented here has important demonstration significance for revealing the scientific connotation of the compatibility of compound traditional medicine.


Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Panax , Aconitum/química , Alcaloides/química , Cromatografia Líquida de Alta Pressão/métodos , Diterpenos , Medicamentos de Ervas Chinesas/química , Espectrometria de Massas por Ionização por Electrospray/métodos
3.
Zhongguo Zhong Yao Za Zhi ; 47(1): 279-284, 2022 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-35178935

RESUMO

Quality is the guarantee for the clinical safety and effectiveness of Chinese medicine. Accurate quality evaluation is the key to the standardization and modernization of Chinese medicine. Efforts have been made in improving Chinese medicine quality and strengthening the quality and safety supervision in China, but rapid and accurate quality evaluation of complex Chinese medicine samples is still a challenge. On the basis of the development of ambient mass spectrometry and the application in quality evaluation of complex Chinese medicine systems in recent years, the authors developed the multi-scenario Chinese medicine quality evaluation strategies. A systematic methodology was proposed in specific areas such as real-time monitoring of the quality of complex Chinese medicine decoction system, rapid toxicity grading of compound Chinese patent medicine, and evaluation of bulk medicinals of Chinese patent medicine. Allowing multi-scenario analysis of Chinese medicine, it is expected to provide universal research ideas and technical methods for rapid and accurate quality evaluation of Chinese medicine and boost the high-quality development of Chinese medicine industry.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , China , Espectrometria de Massas , Medicamentos sem Prescrição , Padrões de Referência
4.
Biomed Chromatogr ; 35(12): e5175, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34390018

RESUMO

Viscum articulatum Burm. f. is a parasitic plant rich in flavonoids, triterpenoids, and catechins and has a high nutritional value. It has been reported that consuming V. articulatum can prevent cardiac diseases. In this study, six bioactive compounds, including catechins, triterpenoids, and phenylpropanoid glycosides, were determined in alcohol extracts of the plant using HPLC. The anti-inflammatory and antioxidant activities of three catechins, two triterpenoids, and three combination drugs were measured in cardiomyocytes, and the results showed that the anti-inflammatory activity was significantly enhanced while retaining strong antioxidant activity when epicatechin and ursolic acid were used in combination. The main quality markers epicatechin and ursolic acid were screened based on the specificity of the genuine herb and a potent synergistic effect, and the lowest limitation contents of V. articulatum which could discriminate it from some other taxonomically similar materials were accordingly determined. This self-built lowest limitation content of the two screened quality markers could quickly and accurately reflect the efficacy in terms of chemical composition and reverse the disorderly market use of nongenuine herbs or confusing species for adulteration. This study is of some significance for market regulation, drug development, and clinical medication.


Assuntos
Extratos Vegetais , Viscum , Animais , Antioxidantes/análise , Antioxidantes/química , Antioxidantes/toxicidade , Catequina/análise , Linhagem Celular , Sobrevivência Celular , Cromatografia Líquida de Alta Pressão/métodos , Glicosídeos/análise , Limite de Detecção , Modelos Lineares , Extratos Vegetais/análise , Extratos Vegetais/química , Extratos Vegetais/toxicidade , Ratos , Reprodutibilidade dos Testes , Triterpenos/análise , Viscum/química , Viscum/classificação
5.
J Ethnopharmacol ; 277: 114216, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044076

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aconitum carmichaelii Debeaux, a famous traditional medicinal herb for collapse, rheumatic fever, and painful joints, always raises global concerns about its fatal toxicity from toxic alkaloids when improperly processed. Therefore, it is urgent to clarify the internal molecular mechanism of processing detoxification on Aconitum and develop simple and reliable approaches for clinical application, which is also of great significance to the rational medicinal use of Aconitum. AIM OF THE STUDY: The study aimed at developing a complete molecular mechanism exploration strategy in complex medicinal herb decocting system, clarifying the internal molecular mechanism of processing detoxification on Aconitum, and exploring valid approaches for detoxification. MATERIALS AND METHODS: Aconiti Lateralis Radix Praeparata (Fuzi) was selected as the model for exploring the complex Aconitum detoxification mechanism using an advanced online real-time platform based on extractive electrospray ionization mass spectrometry. The methods realized the sensitive capture of dynamic trace intermediates, accurate qualitative and quantitative analysis, and real-time and long-term monitoring of multi-components with satisfactory accuracy and resistance to complex matrices. RESULTS: Components in the complex Aconitum decocting system were real-timely characterized and fat meat was discovered and verified to directionally detoxify Aconitum while reserving the therapy effect. More importantly, the dynamic detoxification mechanism in the chemically complex Aconitum decoction was molecularly profiled. A novel reaction pathway based on nucleophilic substitution reaction mechanism was proposed. As confirmed by the theoretic calculations at DFT B3LYP/6-31G (d) levels, fatty acids (e.g., palmitic acid) acted as a green, cheap, and high-performance catalyst and promote the decomposition of toxic diester alkaloids to non-toxic and active benzoyl-monoester alkaloids through the discovered mechanism. CONCLUSION: The study exposed a novel detoxification molecular mechanism of Aconitum and provided an effective method for the safe use of Aconitum, which could effectively guide the development of traditional processing technology and compatibility regulation of the toxic herb and had great value to the modernization and standardization development of traditional medicine.


Assuntos
Alcaloides/análise , Diterpenos/análise , Medicamentos de Ervas Chinesas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Alcaloides/química , Alcaloides/toxicidade , Diterpenos/química , Diterpenos/toxicidade , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/toxicidade , Ácidos Graxos/metabolismo , Reprodutibilidade dos Testes
6.
J Ethnopharmacol ; 277: 114233, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34044077

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The genus Viscum comprises approximately 100 species that are mainly distributed across Africa, Asia and Europe. The extracts and preparations of Viscum species are widely used as common complementary and alternative medicines in the treatment of rheumatism and cancer. AIM OF THE REVIEW: This review aims to explore the medicinal properties of twelve species belonging to the genus Viscum for potential therapeutic applications. MATERIALS AND METHODS: We collected online information (including PubMed, CNKI, Google Scholar, and Web of Science) from January 1915 to April 2021 and knowledge from classical books on Chinese herbal medicines available for 12 species of the genus Viscum, including Viscum coloratum (Kom.) Nakai, Viscum album L., Viscum articulatum Burm. f., Viscum liquidambaricola Hayata, Viscum ovalifolium DC., Viscum capitellatum Sm., Viscum cruciatum Sieber ex Boiss., Viscum nudum Danser, Viscum angulatum B.Heyne ex DC., Viscum tuberculatum A.Rich., Viscum multinerve Hayata, and Viscum diospyrosicola Hayata. RESULTS: At least 250 different compounds have been reported across twelve Viscum species, including amino acid and peptides, alkaloids, phenolic acids, flavonoids, terpenoids, carbohydrates, fatty acids, lipids, and other types of compounds. In particular, for Viscum coloratum (Kom.) Nakai and Viscum album L., the plants, preparations, and bioactive components have been thoroughly reviewed. This has allowed to elucidate the role of active components, including lectins, viscotoxins, flavonoids, terpenoids, phenolic acids, and polysaccharides, in multiple bioactivities, such as anti-cancer, anti-rheumatism arthralgia, anti-inflammation, anti-cardiovascular diseases, enhancing immunity, and anti-chemotherapy side effects. We also evaluated quality control methods based on active compounds, in vivo exposure compounds, and discriminated chemical markers. CONCLUSIONS: This is the first report to systematically review the pharmaceutical development history, chemical composition, clinical evidence, pharmacological activity, discriminated chemical markers, in vivo exposure, and quality control on twelve distinct species of Viscum plants with medicinal properties. The significant safety and efficacy, along with the minor side effects are constantly confirmed in clinics. The genus Viscum is thus an important medicinal resource that is worth exploring and developing in future pharmacological and chemical studies.


Assuntos
Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Viscum/química , Animais , Etnofarmacologia , Humanos , Medicina Tradicional/métodos , Compostos Fitoquímicos/isolamento & purificação , Extratos Vegetais/efeitos adversos
7.
Zhongguo Zhong Yao Za Zhi ; 46(6): 1357-1367, 2021 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-33787132

RESUMO

The growth years of traditional Chinese medicinal materials are closely related to their quality, which directly affects the efficacy and safety of clinical medication. Therefore, it is particularly important to establish an identification method for the growth years of traditional Chinese medicinal materials. In this review, the identification methods for the growth years of traditional Chinese medicinal materials were summarized systematically, and were divided into four types according to the identification principles and methods: traditional identification, molecular identification, physical/chemical identification, and integrated identification. Relying on rich experience, objective molecular markers, various physical/chemical methods and integrated identification techniques(including infrared spectroscopy, nuclear magnetic resonance spectroscopy, high performance liquid chromatography, gas chromatography, mass spectrometry, bionic identification technology and their tandem technologies, etc.), the differences of characters or chemical fingerprints were compared in depth. The growth years of traditional Chinese medicinal materials were quickly identified or predicted by the appearance and characters, the whole fingerprint information or the content of specific chemical markers, and their content ratios. Through the case analysis of mature varieties, we intend to promote the establishment of a perfect technology system for the identification of the growth years of traditional Chinese medicinal materials, and to provide a reference for other perennial herbal materials, finally resulting in the accurate and precise quality control of traditional Chinese medicinal materials.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , China , Cromatografia Líquida de Alta Pressão , Cromatografia Gasosa-Espectrometria de Massas , Humanos
8.
J Pharm Biomed Anal ; 193: 113713, 2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33160222

RESUMO

Aconitum L., the main source of Aconitum medicinal materials, is rich in diterpenoid alkaloids. Several drugs derived from diterpenoid alkaloids are widely used to the current clinical treatment of pain, inflammation, and other symptoms. This paper aims to clarify the main metabolites and distribution of diterpenoid alkaloids in different parts of Aconitum plants. To that end, 7 species of Aconitum from three subgenera were analyzed by UHPLC-Q-TOF-MS under identical conditions. The fragmentation regularity of various types of diterpene alkaloids were determined and a total of 126 metabolites were identified by comparing the reference material and secondary mass spectrometry, with the literature. 67, 49, 17, 41, 14, 17 and 21 metabolites were identified from Aconitum carmichaeli, Aconitum stylosum, Aconitum sinomontanum, Aconitum vilmorinianum, Aconitum pendulum, Aconitum tanguticum and Aconitum gymnandrum, respectively. Meanwhile, the structure type of A. carmichaeli, A. stylosum, A. vilmorinianum, A. pendulum, A. gymnandrum were identified as C19 type, A. sinomontanum was C18 type, while A. tanguticum was C20 type. A high similarity of metabolites was found between A. stylosum and A. vilmorinianum. The quantitative analysis of 19 compounds and the relative peak area of all metabolites which obtained through internal standard berberine, highlighted compounds like karakoline, talatisamine and atisine as references for future study of metabolic pathways. Furthermore, results from metabolites distribution and relative peak area analysis suggest that the leaf of A. carmichaeli, the leaf and stem of A. stylosum and A. vilmorinianum, and the flower of A. pendulum have potential as medicinal resources and are worth further development. These results establish a foundation for the comprehensive utilization of Aconitum resources.


Assuntos
Aconitum , Alcaloides , Diterpenos , Cromatografia Líquida de Alta Pressão , Diterpenos/análise , Raízes de Plantas/química
9.
J Pharm Biomed Anal ; 192: 113654, 2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33120312

RESUMO

The proprietary Chinese medicine (PCM) has become a significant supplement of modern medicine. Nevertheless, the absence of quality control standard of compatible materials in PCM has led to serious adulteration, which has an extremely bad effect on safety of drug use and clinical efficacy. Here, a quality tracing evaluation strategy of compatible materials in 32 Aconitum proprietary Chinese medicines (APCMs) was established, including data normalization, model development, model verification, and unknown prescription cracking. The model was delimited based on the weighted content of total 9 key alkaloids in 24 APCMs, which were 5.65-57.10 µg/g for extract medicines and 42.62-380.61 µg/g for powder medicines. Three newly published commercial APCMs, including Wangbi Tablet, Wangbi Granule, and Fengshigutong Capsule, were used to verify its reliability and the results proved to be positive. Moreover, a novel prescription cracking approach was proposed to decode the content of each material in five unknown prescriptions including Yaoxitong Capsule, Tongrendahuoluo Pill, Xinbao Pill, Dahuoluo Capsule, and Mugua Pill. Ultimately, the single or two compatible Aconitum materials in APCMs was successfully decoded and the processed level of the materials were effectively judged. This study for the first time established a practical strategy for supervision and cracking of compatible materials in PCMs and is of great significance to improve the quality control of PCMs.


Assuntos
Aconitum , Alcaloides , Medicamentos de Ervas Chinesas , Aconitina , China , Reprodutibilidade dos Testes
10.
Acta Pharm Sin B ; 10(8): 1511-1520, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963946

RESUMO

Development of rapid analytical methods and establishment of toxic component limitation standards are of great importance in quality control of traditional Chinese medicine. Herein, an on-line extraction electrospray ionization mass spectrometry (oEESI-MS) coupled with a novel whole process integral quantification strategy was developed and applied to direct determination of nine key aconitine-type alkaloids in 20 Aconitum proprietary Chinese medicines (APCMs). Multi-type dosage forms (e.g., tablets, capsules, pills, granules, and liquid preparation) of APCM could be determined directly with excellent versatility. The strategy has the characteristics of high throughput, good tolerance of matrix interference, small amount of sample (∼0.5 mg) and reagent (∼240 µL) consumption, and short analysis time for single sample (<15 min). The results were proved to be credible by high performance liquid chromatography-mass spectrometry (LC-MS) and electrospray ionization mass spectrometry, respectively. Moreover, the limitation standard for the toxic aconitines in 20 APCMs was established based on the holistic weight toxicity (HWT) evaluation and the Chinese Pharmacopoeia severally, and turned out that HWT-based toxicity evaluation results were closer to the real clinical applications. Hence, a more accurate and reliable APCM toxicity limitation was established and expected to play an important guiding role in clinics. The current study extended the power of ambient MS as a method for the direct quantification of molecules in complex samples, which is commonly required in pharmaceutical analysis, food safety control, public security, and many other disciplines.

11.
Zhongguo Zhong Yao Za Zhi ; 45(24): 6072-6080, 2020 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-33496149

RESUMO

Dao-di herbs, which are widely recognized as medicinal materials with a high quality and good efficacy in clinic, are now facing the dilemma of absence of standard. This study focused on a pivotal scientific problem of design and application of quality standard of Dao-di herbs, and systematically illustrated the general rules for the quality standard of Dao-di herbs involving "four rules, six core contents, and three key methods". The quality standard of Dao-di herbs shall be fully based on literatures as well as habitat, planting/breeding, processing, characters, chemical-pharmacological/toxic data. The common requirements for the quality standard of Dao-di herbs contain "clear source, explicit origin, rational indicator, gradable quality, and multiple detection methods". Notably, traditional experiences and modern techniques, quality tracing management system, "quality determination by distinguishing characters" method, rapid detection technology, effective/toxic substances control method, were comprehensively applied in this standard to purse the objectification, automation, and intellectualization of detection technology. Appearance characters, chemical components, and bioactive parameters, unified effective/toxic indicators, quality markers, and pharmacopeial control indicators and reasonable ranges were included in rigorous quality standards for Dao-di herbs. Besides, simple grading method shall be developed to guide the implementation of "high quality-high price" policy. Eventually, the new quality standards for Dao-di herbs will lead international standards and promote the high-quality development of Dao-di herbs.


Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Medicina Tradicional Chinesa , Padrões de Referência , Tecnologia
12.
Zhongguo Zhong Yao Za Zhi ; 44(17): 3695-3704, 2019 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-31602941

RESUMO

Aconitums,represented by Aconite Radix,Aconiti Lateralis Radix Praeparata and Aconiti Kusnezoffh Folium,is a kind of traditional Chinese medicine with a long medicinal history in China. They possess the significant toxicity and therapeutic effects simultaneously. Their potent effects of rescuing from dying,curing rheumatism,anti-inflammation,and analgesia make Aconitums highly regarded by physicians and pharmacists of various dynasties. However,countless poisoning cases caused by an irrational use of Aconitums were reported. In case of improper application and exceeding the therapeutic window,the acute cardiotoxicity and neurotoxicity would be caused,seriously threatening health and even life of the users. Therefore,the clinical application of Aconitums is limited to some extent. To avoid its toxicity and ensure the safety of medicinal use,Aconitums is usually used in a form of its processed products instead of the crude herbs,or combined with some other traditional Chinese medicines in a normal prescription. A proper processing and compatibility method can detoxicate its severe toxicity,reduce the adverse reactions,and also significantly broaden the indications and application range of Aconitums. This provides a guarantee for the secondary exploitation and utilization of Aconitums. In this paper,the traditional processing methods of Aconitums,along with the modern advancement were reviewed,and the mechanisms of detoxification by processing and compatibility were also illuminated. The physical detoxification mode and chemical detoxification mode were found as two main detoxification ways for Aconitums. In particular,the detoxification by hydrolysis,ion-pair,and saponification were three main means. The mechanisms illustrated in this paper can be a reference to the development of modern processing method and a guidance for appropriate use of Aconitums in clinical application.


Assuntos
Aconitum/química , Composição de Medicamentos/métodos , Medicamentos de Ervas Chinesas/química , Aconitum/toxicidade , China , Medicamentos de Ervas Chinesas/toxicidade , Medicina Tradicional Chinesa , Folhas de Planta/química , Raízes de Plantas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...